Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 2 (55mg, 0.13mmol) and Ag2O (18.5mg, 0.08mmol) in a 5mL flask was flashed with nitrogen. Anhydrous acetonitrile (1.5mL) was added and the resulting mixture was heated at 65C for 20h. CuBr2 (29.5mg, 0.13 3mmol) and K2CO3 (18.3mg, 0.13mmol) was added to the above solution. After stirring for another 20h, the mixture was filtered through Celite. The filtrate was concentrated and the residue was re-precipitated from acetonitrile/ether to give dark purple solids (240mg, 70%). IR (CHCl3) upsilon(C=O) 1595cm-1. UV-Vis (MeOH) lambdamax (epsilon): 219 (1.0¡Á104), 250 (5.2¡Á103), 340 (sh, 1.3¡Á103), 381 (sh, 5.4¡Á102) and 640 (79) nm; mueff=1.71 muB (295K); HRMS (ESI): m/z 396.1088 [M-Br]+, calcd. 396.1017.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Aaron Lin, Shih-Chieh; Liu, Yi-Hung; Peng, Shie-Ming; Liu, Shiuh-Tzung; Journal of Organometallic Chemistry; vol. 859; (2018); p. 52 – 57;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1 mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martn, Enrique; Lemus, Luis; Costamagna, Juan; Faras, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2015); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A yellow solution of 168.0 mg (0.736 mmol) of 2b in toluene (10 mL) was added to a green CH3CN solution (20 mL) containing 105.6 mg (0.736 mmol) CuBr with stirring at ambient temperature. The reaction mixture was allowed to stir overnight forming a dark green precipitate. The solution was filtered, and the precipitate washed with cold MeOH (5 mL) and dried under vacuum (57.9 mg, 17% yield). 1H and 13C{1H} NMR spectra could not be recorded due to strong paramagnetic properties of complex. FTIR (KBr) 3425, 3056, 3006, 2918, 1627, 1593, 1466, 1436, 1300, 1269, 1236, 1201, 1157, 1106, 1092, 1069, 1046, 967, 958, 914, 849, 774, 767, 744, 694, 652, 567, 543, 501, 458, 417 cm-1. Anal. Calc’d. for C13H12Br2CuN2S: C = 34.57%, H = 2.68%, N = 6.20%. Found: C = 34.17%, H = 3.36%, N = 6.44%. UV-vis (DMF, 0.050 mg/mL) lambdamax (epsilon) = 266 (7.6 * 103), 353.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Cross, Edward D.; Ang, M. Trisha C.; Richards, D. Douglas; Clemens, Amy C.; Muthukumar, Harshiny; McDonald, Robert; Woodfolk, London; Ckless, Karina; Bierenstiel, Matthias; Inorganica Chimica Acta; vol. 481; (2018); p. 69 – 78;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A mixture of CuBr (0.57g, 4mmol) and 2,9-dimethyl-1,10-phenanthroline (L3) (0.72g, 2mmol) in CH3CN (30ml) was stirred overnight under nitrogen atmosphere at room temperature. The copper complex was obtained as a brick-red solid in 90% yield.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Liang, Zhaoli; Wang, Fei; Chen, Pinhong; Liu, Guosheng; Journal of Fluorine Chemistry; vol. 167; (2014); p. 55 – 60;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

General procedure: 0.018g (0.182mmol) of CuCl was added to 0.340g (0.205mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed, which was filtered, and solvent was removed in vacuo. The precipitate was washed with Et2O and extracted with THF, then recrystallized with Et2O/MeOH/THF to give [PPh4]2[2a] (0.250g, 0.143mmol, 79% based on CuCl). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[2b] (96% based on CuBr) and [PPh4]2[2c] (71% based on CuI), respectively, upon crystallization from Et2O/THF.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

General procedure: HLBAP (0.525 g, 1 mmol) and triethylamine (0.28 mL, 2 mmol) were dissolved in a 2:1 acetonitrile/dichloromethane mixture (45 ml), and then copper salt with the corresponding anion (1 mmol) was added. The reaction mixture was stirred for 4 h at room temperature in the presence of air. X-ray quality red brown crystals were grown from a 1:1 solvent mixtureof dichloromethane/methanol.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Safaei, Elham; Bahrami, Hadiseh; Wojtczak, Andrzej; Alavi, Saman; Jagli?i?, Zvonko; Polyhedron; vol. 122; (2017); p. 219 – 227;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Analyzing the synthesis route of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Synthesis of [(SIMes)CuBr]. In an oven-dried vial, copper(I) bromide (0.522 g, 3.63 mmol), SIMes.HCl (0.86 g, 2.52 mmol) and sodium tert-butoxide (0.243 g, 2.52 mmol) were loaded inside a glovebox and stirred in dry THF (18 mL) overnight at room temperature outside of the glovebox. After filtration of the reaction mixture through a plug of Celite, the filtrate was mixed with hexane to form a precipitate. A second filtration afforded 0.808 g (71% yield) of the title complex as an off-white solid.Spectroscopic and analytical data for [(SIMes)CuBr]: 1H NMR (300 MHz, [D6]acetone): delta=7.01 (s, 4H, HAr), 4.16 (s, 4H, NCH2), 2.37 (s, 12H, ArCH3), 2.29 (s, 6H, ArCH3); 13C NMR (75 MHz, CDCl3): delta=202.6 (C, NCN), 138.5 (C, CAr), 135.3 (CH, CAr), 135.0 (C, CAr), 129.7 (CH, CAr), 51.0 (CH2, NCH2), 21.0 (CH3, ArCH3), 18.0 (CH3, ArCH3); Elemental analysis calcd for C21H26BrCuN2 (449.89): C, 56.06; H, 5.83; N, 6.23. Found: C, 55.98; H, 5.64; N, 6.21%.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Institut Catala d’Investigacio Quimica; Institucio Catalana de Recerca i Estudis Avancats; US2009/69569; (2009); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

The important role of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

CuI (0.190 g, 1 mmol) was dissolved in acetonitrile (6 ml)at room temperature, followed by the addition of a solution of Hdpt (0.112 g, 0.5 mmol) in acetonitrile (8 ml) with vigorous magnetic stirring in a 25 ml Parr Teflon-lined stainless steel vessel. The mixture was heated for 3 days at 150 C and then cooled to room temperature at a rate of10 C/h.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Hu, Sheng; Lin, DianRong; Xie, ZhenMing; Zhou, ChangXia; He, WenXi; Yu, FangYong; Transition Metal Chemistry; vol. 40; 6; (2015); p. 623 – 629;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

Direct route A round-bottomed flask equipped with a stirring bar was charged with the ligand, SSBn (0.1503g; 0.383mmol) and acetonitrile (10mL) to give a white milky suspension. Anhydrous CuBr (0.0555g, 0.38mmol) was added in one portion under vigourous stirring to give a white suspension which became briefly transparent after a few minutes. The mixture was stirred overnight to give an off-white precipitate; it was sonicated for a few seconds and further stirred for 30min. Diethyl ether (10mL) was added and stirring was continued for 5min to give the product as a white powder which was filtered, washed with diethyl ether (5mL) and dried in air (0.1802g, 0.334mmol, 88%).Sulfur insertion route [CuBr(CSBn)]2 (103mg, 0.102mmol) was partially dissolved in acetonitrile (20mL) in a Schlenk flask. To this was added an excess of sulfur (66mg, 2mmol per sulfur). The mixture was stirred at 70C for 5h after which time the mixture was diluted with 10mL of acetonitrile and filtered. The residue was extracted with acetonitrile (2¡Á10mL). The solvent of the combined organic phases was removed by oil pump vacuum and the off-white solid dried under reduced pressure. Yield=72.6mg (0.135mmol, 66%). 1H NMR (300MHz, DMSO-d6): delta=5.22 (s, 4H, PhCH2), 6.66 (s, 2H, NCH2N), 7.32 (s, 10H, 2¡Á C6H5), 7.50 (overlapping signal, 2H, CH=CH), 7.70 (overlapping signal, 2H, CH=CH). 13C{1H} NMR (DMSO-d6, 100MHz) delta 50.3 (CH2Ph), 56.2 (NCH2N), 118.9 (CHCH), 119.2 (CHCH), 127.9 (overlapping, m/p-C6H5), 128.6 (o-C6H5), 135.9 (i-C6H5), 159.4 (C=S). IR (cm-1): 3390.3, 3092.1, 1569.7, 1495.9, 1451.8, 1408.1, 1231.2, 1190.4, 959.6, 704.5, 671.6. MS (ESI+), m/z 991 [Cu2(SSBn)2Br]+, 847 [Cu(SSBn)2]+, 455. [Cu(SSBn)]+. Elemental analysis: Calc. for C21H20BrCuN4S2: C: 47.06; H: 3.76; N: 10.45. Found: C: 46.96; H: 3.81; N: 10.40.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Slivarichova, Miriam; Correa ?da Costa, Rosenildo; Nunn, Joshua; Ahmad, Ruua; Haddow, Mairi F.; Sparkes, Hazel A.; Gray, Thomas; Owen, Gareth R.; Journal of Organometallic Chemistry; vol. 847; (2017); p. 224 – 233;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”