《Dynamics of Chiral Cations in Two-Dimensional CuX4 and PbX4 Perovskites (X = Cl and Br)》 was published in Inorganic Chemistry in 2020. These research results belong to Takahashi, Masaki; Hoshino, Norihisa; Sambe, Kohei; Takeda, Takashi; Akutagawa, Tomoyuki. SDS of cas: 7789-45-9 The article mentions the following:
Chiral organic ammonium cations ((R)-2-methylphenethylammonium (R-MPhA) and (R)-3,7-dimethyloctylammonium (R-DMOA)) cations were combined with [MX4]2- anions (M = Cu and Pb, X = Cl and Br) to form two-dimensional (2D) perovskites: (R-MPhA)2CuCl4 (1a), (R-MPhA)2CuBr4 (1b), (R-DMOA)2CuCl4 (2a), (R-DMOA)2CuBr4 (2b), (R-DMOA)2PbCl4 (2c), and (R-DMOA)2PbBr4 (2d). The point shearing of the MX4 octahedron formed 2D perovskite layers, which were sandwiched by the bilayer mol. assembly of chiral organic ammonium cations. We found that the flexible and polar organic R-MPhA and R-DMOA cations in the 2D perovskites played an important role in the phase transition behavior and dielec. responses. Salts 2a-2d showed similar solid-solid (S1-S2) phase transitions, for which the temperatures decreased in the order of CuCl4 (2a) > PbCl4 (2c) > CuBr4 (2b) > PbBr4 (2d). The occupation volume of one R-DMOA per MX4 octahedron determined the dynamic crystalline space for the motional freedom of chiral ammonium in the 2D perovskite layer. Although thermally activated dielec. fluctuations were observed in salts 2a, 2b, and 2c, only an order-disorder-type dielec. phase transition was observed in salt 2d. Interband optical transitions were observed in the CuCl4 and CuBr4 2D perovskites, whereas sharp exciton absorptions were observed in the 2D PbCl4 and PbBr4 layers in perovskite salts 2c and 2d. Chiral organic ammonium cations (R)-2-methylphenethylammonium and (R)-3,7-dimethyloctylammonium were combined with [MX4]2- anions (M = Cu and Pb, X = Cl and Br) to form 2D perovskites. Thermally activated dielec. fluctuations and an order-disorder-type dielec. phase transition was observed in organic layers. Interband optical transitions were observed in the CuCl4 and CuBr4 2D perovskites, whereas sharp exciton absorptions were observed in the 2D PbCl4 and PbBr4 layers.Cupric bromide(cas: 7789-45-9SDS of cas: 7789-45-9) was used in this study.
Cupric bromide(cas: 7789-45-9) can be used as reducing agent, when complexed by three molecules of pyridine initiators for the controlled polymerization of styrene, methyl acrylate and methyl methacrylate.SDS of cas: 7789-45-9
Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”