Having gained chemical understanding at molecular level, chemistry graduates may choose to apply this knowledge in almost unlimited ways, as it can be used to analyze all matter and therefore our entire environment. 1111-67-7, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Synthetic Route of 1111-67-7In an article, once mentioned the new application about 1111-67-7.
Tris(2-cyanoethyl)phosphine (tcep) reacts with the copper(I) compounds, CuX (X = Cl, Br, I and SCN), in a 1:1 ratio to give 1:1 complexes, CuX(tcep), whereas it reacts with CuY (Y = PF6, ClO4, NO3, BH4, CN and CF3COO) in a 2:1 ratio to give the 2:1 complexes, CuY(tcep)2. Single crystal X-ray structures show that for the anions X = Br and SCN, the complexes are coordination polymers, [CuX(tcep)]n, with the Cu centres being bridged by the anion, and as well, one nitrile arm per tcep ligand coordinates intermolecularly to the Cu to give tetrahedral ‘PBr2N’ and ‘PSN2’ coordination spheres respectively. The 2:1 compounds exhibit a variety of structures. For Y = ClO4, CN and CF3COO polymeric structures are formed except for Y = BH4 where the compound is a discrete monomer, [Cu(BH 4)(tcep)2], with a chelating anion and two monodentate P-bound tcep ligands. Both the compounds obtained with Y = CN and CF 3COO also contain coordinated anions and are formulated as [Cu(CN)(tcep)2]n and [Cu(CF3COO)(tcep) 2]n respectively. In the case of Y = CN the anion is bridging and the tcep ligands are only P-bound giving a ‘P2NC’ coordination sphere. In contrast, for Y = CF3COO, the anion is an O-bound monodentate and the tcep ligands bridge to give a ‘P2NO’ environment for the copper. In the case of Y = ClO4, the anion is not coordinated but a polymeric structure, [Cu(tcep)2] n(ClO4)n, is formed via bridging tcep ligands linking Cu centres intermolecularly resulting in a ‘P2N2’ coordination sphere.
We’ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Synthetic Route of 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”