The Absolute Best Science Experiment for (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

If you are hungry for even more, make sure to check my other article about 14347-78-5, Formula: C6H12O3.

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, formurla is C6H12O3. In a document, author is Tang, Chih-Wei, introducing its new discovery. Formula: C6H12O3.

Reforming of methanol to produce hydrogen over the Au/ZnO catalyst

Gold particle with an average size of d(Au) similar to 4 nm was dispersed on ZnO by the deposition precipitation method. The fabricated Au/ZnO catalyst was used to produce hydrogen from reforming of methanol. Four reforming reactions, i.e., decomposition of methanol (DM), steam reforming of methanol (SRM), partial oxidation of methanol (POM) and oxidative steam reforming of methanol (OSRM), were evaluated in a fixed bed reactor. A reaction temperature of T-R > 623 K was required for catalyzing reactions of DM and SRM. Interestingly, high methanol conversion (C-MeOH > 90%) was found from reforming reactions of POM and OSRM at an amazing low temperature of T-R < 473 K. Besides, a presentable hydrogen yield (R-H2 similar to 2.4) and a low selectivity of CO (S-CO similar to 1%) were simultaneously attained from the reaction of OSRM. Therefore, the low temperature OSRM reaction over the Au/ZnO catalyst is suggested as a friendly reforming process for on-board production of hydrogen. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. If you are hungry for even more, make sure to check my other article about 14347-78-5, Formula: C6H12O3.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”