The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 18742-02-4, Name is 2-(2-Bromoethyl)-1,3-dioxolane, SMILES is C(C1OCCO1)CBr, in an article , author is Singh, Deobrat, once mentioned of 18742-02-4, Recommanded Product: 2-(2-Bromoethyl)-1,3-dioxolane.
Mechanism of formaldehyde and formic acid formation on (101)-TiO2@Cu-4 systems through CO2 hydrogenation
The decoration of a copper cluster on the anatase phase of a (101)-TiO2 surface to increase the reduction of CO2 has gained significant interest and potential to trigger sustainable solar-fuel-based economy. In the present work, we studied a heterogeneous surface for the reduction of CO2, which can produce various organic compounds such as formic acid, formaldehyde, methanol, ethanol, and methane. The density functional theory calculations were employed to study the formation of formaldehyde and methanol from CO(2)via hydrogenation by H-2 on a Cu catalyst. The copper cluster is a unique catalyst for charge separation and conversion into important organic compounds. Theoretical investigations suggest that these organic compounds can be used as feedstock or be converted into solar fuel.
Interested yet? Read on for other articles about 18742-02-4, you can contact me at any time and look forward to more communication. Recommanded Product: 2-(2-Bromoethyl)-1,3-dioxolane.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”