Top Picks: new discover of 1111-67-7

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1111-67-7, help many people in the next few years.name: Cuprous thiocyanate

In homogeneous catalysis, the catalyst is in the same phase as the reactant. The number of collisions between reactants and catalyst is at a maximum.In a patent, 1111-67-7, name is Cuprous thiocyanate, introducing its new discovery. name: Cuprous thiocyanate

An insight into copper catalyzed allylation of alkyl zinc halides. Comparison of reactivity profiles for catalytic and stoichiometric alkylzinc-copper reagents

The gamma-selective allylation of catalytic and stoichiometric alkylzinc-cuprates have been kinetically studied. The reactivity profiles generated by allylation reactions of n-butylzinc chloride catalyzed by CuX compounds (X = I, Br, Cl, CN, SCN) and also catalyzed by n-butylzinc-copper reagents and di n-butylzinc-copper reagents were evaluated. Reactivity profiles for allylation of stoichiometric n-butylzinc-copper reagents and di n-butylzinc-copper reagents were also prepared. All CuX compounds have been screened for the preparation of Grignard reagent derived n-butylzinc-copper reagents and di n-butylzinc-copper reagents. The evaluation of the profiles indicates that the active catalyst might be RCu(X)ZnCl and also to some degree, R2CuZnCl ¡¤ ZnClX, which both could favor formation of gamma-product. All data supports the reductive elimination of sigma-allyl Cu (III) complex formed at vinylic terminal to give gamma-allylated product with a quite slow isomerization to sigma-allyl Cu (III) complex formed at allylic terminal to give alpha-allylated product. In the allylation mechanism of zinc cuprates, the role of counter ion, ZnCl+ has been discussed.

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1111-67-7, help many people in the next few years.name: Cuprous thiocyanate

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”