Wang, Lixia et al. published their research in Separation and Purification Technology in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: 20427-59-2

Fabrication of breathable Janus membranes with gradient unidirectional permeability by micro-imprinting was written by Wang, Lixia;Zhou, Baokai;Bi, Zhaojie;Wang, Chen;Zheng, Lun;Niu, Hongbin;Cui, Pengyuan;Wang, Dongfang;Li, Qian. And the article was included in Separation and Purification Technology in 2022.Recommanded Product: 20427-59-2 This article mentions the following:

The realization of the directional water transport function of Janus membrane is based on the formation of its asym. structure. Nevertheless, the persistent problems of unstable directional water transport and poor adhesion between membranes limit their application. In this paper, based on electrospinning, the copper mesh with an in-situ growth conical nanoneedle structure was innovatively selected as an imprint template, and the conical structure was imprinted between the blended TPU/PAN membrane and the PAN membrane to form a three-layer laminated composite membrane. The gradient unidirectional permeability Janus membrane was developed, which not only constructed an asym. hierarchical structure but also realized the progressive wetting function inside. The water absorption tests showed that the water storage capacity was as high as 2047.37% of its weight Moreover, stable gas permeability could be achieved under 20 cm water column pressure when the gas flow rate was 0.05 kg/cm3. Importantly, the membrane exhibited ultra-stable unidirectional water transport under strong mech. stimulation and prolonged gravity, which provided possibility for preparation of Janus membranes with high durability, strong mech. damage resistance and good air permeability. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Recommanded Product: 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”