What Kind of Chemistry Facts Are We Going to Learn About CCuNS

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Synthetic Route of 1111-67-7, Some examples of the diverse research done by chemistry experts include discovery of new medicines and vaccines, improving understanding of environmental issues, and development of new chemical products and materials. In an article,authors is Kromp, T., once mentioned the application of Synthetic Route of 1111-67-7, Name is Cuprous thiocyanate, is a conventional compound.

The coordination polymers .infin.(1)[CuBr(1,7-phen-kappaN7)] (1a), [CuI(1,7-phen)] (2a) and [(CuI)2(1,7-phen-kappaN7)] (2b) may be prepared by treatment of the appropriate copper(I) halide with 1,7-phenanthroline(1,7-phen) in acetonitrile. 1a exhibits staircase CuBr double chains, 2 a novel quadruple CuI chains. Their thermal properties were investigatedby DTA-TG and temperature resolved powder X-ray diffraction. On heating , both 1:1 compounds decompose to 2:1 polymers and then finally to CuBr or CuI. With 4,7-phenanthroline (4,7-phen), CuBr affords both 1:1 and 2:1 complexes (5a, 5b), CuI 1:1, 2:1 and 3:1 complexes (6a, 6b, 6c) in acetonitrile at 20°C. 5a and 6a display lamellar coordination networks, with the former containing zigzag CuBr single chains, the latter 4-membered (CuI)2 rings. A second 2:1 complex .infin.(2)[(CuI)2(4,7-phen-mu-N4,N7)] (6b’) with staircase CuI double chains can be obtained by reacting CuI with 4,7-phen in a sealed glass tube at 110°C. Both 5a and 6a exhibit thermal decomposition pathways of the general type 1:1 2:1 3:1 CuX, and novel CuX triple chains are proposedfor the isostructural 3:1 polymers 5c and 6c. X-ray structures are repo rted for complexes 1a, 2b, .infin(2)[(CuCN)3(CH3CN)(1,7-phen-mu-N1,N7)] (3c*CH3CN), .infin.(1)[CuSCN(1,7-phen-kappaN7)] (4a), 5a, 6a and .infin.(2)[CuCN(4,7-phen-mu-N4,N7)] (7a).

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”